Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Biol Macromol ; : 132160, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718995

RESUMEN

Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.

2.
Nanoscale Adv ; 6(6): 1648-1652, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38482040

RESUMEN

Multilayer graphene (MLG), obtained by mild sonication of graphite in NMP, was functionalised via 1,3-dipolar cycloaddition with azomethine ylides generated by thermal 1,2-prototropy from various imino esters. The microwave-assisted functionalisation took place in five hours at 100 °C. The resulting MLG, containing substituted proline-based amine functional groups, was characterized using XPS and showed a nitrogen loading three times that obtained for the same transformation performed for five days using convection-assisted heating. The preparation of the imino ester containing a bipyridine unit at the arylidene position allowed for the preparation of the corresponding functionalised MLG, which incorporated the ruthenium atom to achieve a heterogeneous MLG-Ru complex. This supported complex was tested, as a proof of concept, as a photocatalyst of the aerobic oxidative hydroxylation of 4-methoxyphenylboronic acid.

3.
Chemphyschem ; 25(5): e202300794, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165137

RESUMEN

Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3-4 % between pressures of 10-100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.

4.
Nanomaterials (Basel) ; 13(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999275

RESUMEN

The aim of this work is to establish the Oxygen Reduction Reaction (ORR) activity of self-standing electrospun carbon fiber catalysts obtained from different metallic salt/lignin solutions. Through a single-step electrospinning technique, freestanding carbon fiber (CF) electrodes embedded with various metal nanoparticles (Co, Fe, Pt, and Pd), with 8-16 wt% loadings, were prepared using organosolv lignin as the initial material. These fibers were formed from a solution of lignin and ethanol, into which the metallic salt precursors were introduced, without additives or the use of toxic reagents. The resulting non-woven cloths were thermostabilized in air and then carbonized at 900 °C. The presence of metals led to varying degrees of porosity development during carbonization, improving the accessibility of the electrolyte to active sites. The obtained Pt and Pd metal-loaded carbon fibers showed high nanoparticle dispersion. The performance of the electrocatalyst for the oxygen reduction reaction was assessed in alkaline and acidic electrolytes and compared to establish which metals were the most suitable for producing carbon fibers with the highest electrocatalytic activity. In accordance with their superior dispersion and balanced pore size distribution, the carbon fibers loaded with 8 wt% palladium showed the best ORR activity, with onset potentials of 0.97 and 0.95 V in alkaline and acid media, respectively. In addition, this electrocatalyst exhibits good stability and selectivity for the four-electron energy pathway while using lower metal loadings compared to commercial catalysts.

5.
J Colloid Interface Sci ; 623: 915-926, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35636299

RESUMEN

Covalent functionalization of multi-walled carbon nanotubes (MWCNTs) and oxidized MWCNTs (o-MWCNTs) with chlorodiphenylphosphine (Ph2PCl) has been studied by cyclic voltammetry in organic medium. Depending the upper potential limit used in the electrochemical functionalization, different amount of phosphorus incorporation n is obtained, as result of the formation of radical species during the electrochemical oxidation of the Ph2PCl. The electrochemical oxidation of Ph2PCl promotes the covalent attachment of diphenylphosphine-like structure on the carbon nanotube surface. At the same time, the incorporation of Cl on the carbon nanotubes is observed during the functionalization. Furthermore, the presence of oxygen surface groups on the MWCNTs provides a favorable attachment of the Ph2P∙+ species, which has promoted preferentially the formation of CP bonds, whereas the amount of Cl is reduced.

6.
Materials (Basel) ; 14(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34772045

RESUMEN

The production of hydrogen from liquid organic hydrogen carrier molecules stands up as a promising option over the conventional hydrogen storage methods. In this study, we explore the potential of formic acid as a convenient hydrogen carrier. For that, soft-biomass-derived carbon-supported Pd catalysts were synthesized by a H3PO4-assisted hydrothermal carbonization method. To assess the impact of the properties of the support in the catalytic performance towards the dehydrogenation of formic acid, three different strategies were employed: (i) incorporation of nitrogen functional groups; (ii) modification of the surface chemistry by performing a thermal treatment at high temperatures (i.e., 900 °C); and (iii) combination on both thermal treatment and nitrogen functionalization. It was observed that the modification of the carbon support with these strategies resulted in catalysts with enhanced performance and outstanding stability even after six consecutive reaction cycles, thus highlighting the important effect of tailoring the properties of the support.

7.
Talanta ; 232: 122386, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34074388

RESUMEN

Development of effective direct electron transfer is considered an interesting platform to obtain high performance bioelectrodes. Therefore, designing of scalable and cost-effective immobilization routes that promotes correct direct electrical contacting between the electrode material and the redox enzyme is still required. As we present here, electrochemical entrapment of pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on single-wall carbon nanotube (SWCNT)-modified electrodes was carried out in a single step during electrooxidation of para-aminophenyl phosphonic acid (4-APPA) to obtain active bioelectrodes. The adequate interaction between SWCNTs and the enzyme can be achieved by making use of phosphorus groups introduced during the electrochemical co-deposition of films, improving the electrocatalytic activity towards glucose oxidation. Two different procedures were investigated for electrode fabrication, namely the entrapment of reconstituted holoenzyme (PQQ-GDH) and the entrapment of apoenzyme (apo-GDH) followed by subsequent in situ reconstitution with the redox cofactor PQQ. In both cases, PQQ-GDH preserves its electrocatalytic activity towards glucose oxidation. Moreover, in comparison with a conventional drop-casting method, an important enhancement in sensitivity was obtained for glucose oxidation (981.7 ± 3.5 nA mM-1) using substantially lower amounts of enzyme and cofactor (PQQ). The single step electrochemical entrapment in presence of 4-APPA provides a simple method for the fabrication of enzymatic bioelectrodes.


Asunto(s)
Glucosa 1-Deshidrogenasa , Nanotubos de Carbono , Electrodos , Enzimas Inmovilizadas , Glucosa , Cofactor PQQ
8.
ACS Omega ; 5(48): 31323-31331, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324843

RESUMEN

In this work, we reported the preparation of composites based on titania (TiO2) and Zeolite Socony Mobil-5 (ZSM-5) nanozeolite, following two approaches (i.e., incorporating the presynthesized zeolite in the synthesis medium of TiO2 and incorporating presynthesized TiO2 in the synthesis medium of ZSM-5). The materials synthesized were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectrometry analysis, and their photocatalytic activities were assessed in the oxidation of propene in the gas phase. It was observed that the synthesis methodology affects the final properties of the composite, which ultimately affected their photocatalytic performance in the studied application. It was found that the Nano-ZSM5/TiO2 composite was the most active among the investigated samples, which was attributed to the intimate contact between the two components of the composite, the preserved properties of the photocatalytic active phase in the final material, and the positive contribution of the nanozeolite by increasing the local concentration of propene.

9.
Polymers (Basel) ; 12(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261182

RESUMEN

Phosphonated polyanilines were synthesized by copolymerization of aniline (ANI) with both 2- and 4-aminophenylphosphonic acids (APPA). The material composition and the final properties of the copolymers can be easily tailored by controlling the monomers ANI/APPA molar feed ratio. An important influence on the reactivity of monomers has been found with the substituent position in the ring, leading to differences in the properties and size of blocks of each monomer in the polymer. As expected, while 2APPA shows more similarities to ANI, 4APPA is much less reactive. Phosphorus loading of ~5 at% was achieved in the poly(aniline-co-2-aminophenylphosphonic acid) (PANI2APPA) with a 50/50 molar feed ratio. All the resulting copolymers were characterized by different techniques. Experimental results and density functional theory (DFT) computational calculations suggest that the presence of phosphonic groups in the polymeric chain gives rise to inter- and intra-chain interactions, as well as important steric effects, which induce a slight twist in the substituted PANI structure. Therefore, the physicochemical, electrical, and electrochemical properties are modified and can be suitably controlled.

10.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266063

RESUMEN

LaMn1-xCoxO3 perovskites were synthesized by a modified sol-gel method which incorporates EDTA. These materials' electrochemical activity towards both oxygen reduction (ORR) and oxygen evolution reactions (OER) was studied. The cobalt substitution level determines some physicochemical properties and, particularly, the surface concentration of Co and Mn's different oxidation states. As a result, the electroactivity of perovskite materials can be tuned using their composition. The presence of cobalt at low concentration influences the catalytic activity positively, and better bifunctionality is attained. As in other perovskites, their low electrical conductivity limits their applicability in electrochemical devices. It was found that the electrochemical performance improved significantly by physically mixing with a mortar the active materials with two different carbon black materials. The existence of a synergistic effect between the electroactive component and the carbon material was interpreted in light of the strong carbon-oxygen-metal interaction. Some mixed samples are promising electrocatalysts towards both ORR and OER.

11.
ACS Appl Mater Interfaces ; 12(49): 54815-54823, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33237716

RESUMEN

Metal-free carbon-based catalysts have gained much attention during the last 15 years as an alternative toward the replacement of platinum-based catalysts for the oxygen reduction reaction (ORR). However, carbon-based catalysts only show promising catalytic activity in alkaline solution. Concurrently, the most optimized polymer electrolyte membrane fuel cells use proton exchange membranes. This means that the cathode electrode is surrounded by a protonic environment in which carbon materials show poor performance, with differences above 0.5 V in EONSET for nondoped carbon materials. Therefore, the search for highly active carbon-based catalysts is only possible if we first understand the origin of the poor electrocatalytic activity of this kind of catalysts in acidic conditions. We address this matter through a combined experimental and modeling study, which yields fundamental principles on the origin of the pH effects in ORR for carbon-based materials. This is relevant for the design of pH-independent metal-free carbon-based catalysts.

12.
Polymers (Basel) ; 12(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081123

RESUMEN

One of the most challenging targets in oxygen reduction reaction (ORR) electrocatalysts based on N-doped carbon materials is the control of the pore structure and obtaining nanostructured thin films that can easily be incorporated on the current collector. The carbonization of nitrogen-containing polymers and the heat treatment of a mixture of carbon materials and nitrogen precursor are the most common methods for obtaining N-doped carbon materials. However, in this synthetic protocols, the surface area and pore distribution are not controlled. This work enables the preparation of 2D-ordered N-doped carbon materials through the carbonization of 2D polyaniline. For that purpose, aniline has been electropolymerized within the porous structure of two different templates (ordered mesoporous Silica and ordered mesoporous Titania thin films). Thus, aniline has been impregnated into the porous structure and subsequently electropolymerized by means of chronoamperometry at constant potential. The resultant samples were heat-treated at 900 °C with the aim of obtaining 2D N-doped carbon materials within the template structures. Polyaniline and polyaniline-derived carbon materials have been analyzed via XPS and TEM and characterized by electrochemical measurements. It is worth noting that the obtained 2D-ordered mesoporous N-doped carbon materials have proved to be highly active electrocatalysts for the ORR because of the formation of quaternary nitrogen species during the heat treatment.

13.
ACS Appl Mater Interfaces ; 12(25): 28158-28168, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32479052

RESUMEN

We have investigated the gas-phase (P = 1 atm; T = 373 K) hydrogenation of (tertiary alkynol) 2-methyl-3-butyn-2-ol (MBY) and (secondary) 3-butyn-2-ol (BY) over a series of carbon (C), non-reducible (Al2O3 and MgO), and reducible (CeO2 and ZnO) supported monometallic [Pd (0.6-1.2% wt) and Zn (1% wt)] and bimetallic Pd-Zn (Pd:Zn mol ratio = 95:5, 70:30, and 30:70) catalysts synthesized by deposition-precipitation and colloidal deposition. The catalysts have been characterized by H2 chemisorption, hydrogen temperature-programmed desorption (H2-TPD), specific surface area (SSA), X-ray photoelectron spectroscopy (XPS), and transmission (TEM) and scanning transmission electron microscopy (STEM) analyses. Reaction over these catalysts generated the target alkenol [2-methyl-3-buten-2-ol (MBE) and 3-buten-2-ol (BE)] through partial hydrogenation and alkanol [2-methyl-butan-2-ol (MBA) and 2-butanol (BA)]/ketone [2-butanone (BONE)] as a result of full hydrogenation and double-bond migration. The catalysts exhibit a similar Pd nanoparticle size (2.7 ± 0.3 nm) but a modified electronic character (based on XPS). Hydrogenation activity is linked to surface hydrogen (from H2 chemisorption and H2-TPD). An increase in H2:alkynol (from 1 → 10) results in enhanced alkynol consumption with a greater rate in the transformation of MBY (vs BY); H2:alkynol had negligible effect on product distribution. Reaction selectivity is insensitive to the Pd site electron density with a similar response (SMBE = 65 ± 9% and SBE = 70 ± 8%) over Pdδ- (on Al2O3 and MgO) and Pdδ+ (on C and CeO2). A Pd/ZnO catalyst delivered enhanced alkenol selectivity (SMBE = 90% and SBE = 96%) attributed to PdZn alloy phase formation (proved by XRD and XPS) but low activity, ascribed to metal encapsulation. A two-fold increase in the consumption rate was recorded for Pd-Zn/Al2O3 (30:70) versus Pd/ZnO with a similar alloy content (32 ± 4% from XPS), ascribed to a contribution due to spillover hydrogen (from H2-TPD) where high alkenol selectivity was maintained.

14.
Front Chem ; 8: 359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411676

RESUMEN

Various carbon materials were used as support of polyvinylpyrrolidone (PVP)-capped Pd nanoparticles for the synthesis of catalysts for the production of hydrogen from formic acid dehydrogenation reaction. Among investigated, MWCNT-supported catalysts were the most promising, with a TOF of 1430 h-1 at 80°C. The presence of PVP was shown to play a positive role by increasing the hydrophilicity of the materials and enhancing the interface contact between the reactant molecules and the catalytic active sites.

15.
Polymers (Basel) ; 12(5)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370026

RESUMEN

In this study, the phosphonation of a polyaniline (PANI) backbone was achieved in an acid medium by electrochemical methods using aminophenylphosphonic (APPA) monomers. This was done through the electrochemical copolymerization of aniline with either 2- or 4-aminophenylphosphonic acid. Stable, electroactive polymers were obtained after the oxidation of the monomers up to 1.35 V (reversible hydrogen electrode, RHE). X-ray photoelectron spectroscopy (XPS) results revealed that the position of the phosphonic group in the aromatic ring of the monomer affected the amount of phosphorus incorporated into the copolymer. In addition, the redox transitions of the copolymers were examined by in situ Fourier-transform infrared (FTIR) spectroscopy, and it was concluded that their electroactive structures were analogous to those of PANI. From the APPA monomers it was possible to synthesize, in a controlled manner, polymeric materials with significant amounts of phosphorus in their structure through copolymerization with PANI.

16.
Nanomaterials (Basel) ; 9(9)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546926

RESUMEN

Biographene was successfully produced in water from graphite flakes by a simple, rapid, and efficient methodology based on a bioexfoliation technology. The methodology consisted in the application of a lipase, with a unique mechanism of interaction with hydrophobic surfaces, combined with a previous mechanical sonication, to selectively generate lipase-graphene sheets conjugates in water at room temperature. The adsorption of the lipase on the graphene sheets permits to keep the sheets separated in comparison with other methods. It was possible to obtain more than 80% of graphene (in the form of multi-layer graphene) from low-cost graphite and with less damage compared to commercial graphene oxide (GO) or reduced GO. Experimental analysis demonstrated the formation of multi-layer graphene (MLG) mainly using lipase from Thermomyces Lanuginosus (TLL).

17.
Chemistry ; 25(63): 14308-14319, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31385348

RESUMEN

Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer synthesis along with their accompanying cations. In this work, the influence of these cations on the stoichiometry and physicochemical properties of the resulting COPs have been investigated, something that has previously been overlooked, but, as here proven, is highly relevant. As the doping anion, metallacarborane [Co(C2 B9 H11 )2 ]- was chosen, which acts as a thistle. This anion binds to the accompanying cation with a distinct strength. If the binding strength is weak, the doping anion is more prone to compensate the positive charge of the polymer, and the opposite is also true. Thus, the ability of the doping anion to compensate the positive charges of the polymer can be tuned, and this determines the stoichiometry of the polymer. As the polymer, PEDOT was studied, whereas Cs+ , Na+ , K+ , Li+ , and H+ as cations. Notably, with the [Co(C2 B9 H11 )2 ]- anions, these cations are grouped into two sets, Cs+ and H+ in one and Na+ , K+ , and Li+ in the second, according to the stoichiometry of the COPs: 2:1 EDOT/[Co(C2 B9 H11 )2 ]- for Cs+ and H+ , and 3:1 EDOT/[Co(C2 B9 H11 )2 ]- for Na+ , K+ , and Li+ . The distinct stoichiometries are manifested in the physicochemical properties of the COPs, namely in the electrochemical response, electronic conductivity, ionic conductivity, and capacitance.

18.
Chem Commun (Camb) ; 55(52): 7462-7465, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31184644

RESUMEN

Multilayer graphene (MLG), obtained by mild sonication of graphite in NMP or pyridine, was fully characterized via atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoemission spectroscopy (XPS). Then, it was functionalized via 1,3-dipolar cycloaddition with azomethine ylides generated by thermal 1,2-prototropy of various imino esters. The resulting MLG, containing substituted proline-based amine functions, was characterized by XPS and it showed high nitrogen loading, ranging from 0.6 to 4.2 at% depending on the imino ester used. Among these functionalized MLGs a probe sample was subjected to ester hydrolysis and used as a heterogeneous N,O-chelating ligand to coordinate iridium atomic centers. This supported complex was also characterized by XPS and its catalytic activity was tested in the hydrogen transfer reduction of acetophenone, obtaining up to 85% yield. Furthermore, this catalyst could be recycled up to four times.

19.
Materials (Basel) ; 12(8)2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027165

RESUMEN

Nitrogen-containing superporous activated carbons were prepared by chemical polymerization of aniline and nitrogen functionalization by organic routes. The resulting N-doped carbon materials were carbonized at high temperatures (600⁻800 °C) in inert atmosphere. X-ray Photoelectron Spectroscopy (XPS) revealed that nitrogen amount ranges from 1 to 4 at.% and the nature of the nitrogen groups depends on the treatment temperature. All samples were assessed as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution (0.1 M KOH) in order to understand the role of well-developed microporosity as well as the different nitrogen functionalities on the electrocatalytic performance in ORR. It was observed that nitrogen groups generated at high temperatures were highly selective towards the water formation. Among the investigated samples, polyaniline-derived activated carbon carbonized at 800 °C displayed the best performance (onset potential of 0.88 V versus RHE and an electron transfer number of 3.4), which was attributed to the highest concentration of N⁻C⁻O sites.

20.
Materials (Basel) ; 12(8)2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31010022

RESUMEN

The development of electrocatalysts based on the doping of copper over cobalt spinel supported on a microporous activated carbon has been studied. Both copper-cobalt and cobalt spinel nanoparticles were synthesized using a silica-template method. Hybrid materials consisting of an activated carbon (AC), cobalt oxide (Co3O4), and copper-doped cobalt oxide (CuCo2O4) nanoparticles, were obtained by dry mixing technique and evaluated as electrocatalysts in alkaline media for hydrogen evolution reaction. Physical mixtures containing 5, 10, and 20 wt.% of Co3O4 or CuCo2O4 with a highly microporous activated carbon were prepared and characterized by XRD, TEM, XPS, physical adsorption of gases, and electrochemical techniques. The electrochemical tests revealed that the electrodes containing copper as the dopant cation result in a lower overpotential and higher current density for the hydrogen evolution reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA